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HIGH PEAK POWER K ,-BAND GYROTRON OSCILLATOR EXPERIMENTS
WITH SLOTTED AND UNSLOTTED CAVITIES

I. Introduction

Gyrotron operation is generally optimized with respect to
the magnetic detuning (from exact cyclotron resonance), the
interaction length, and the rf electric field at the position
of the electron beam. High power gyrotron oscillators must
operate in high order transverse modes of low Q cavities in
order to increase the ratio of output power to the rf electric
field at the electron beam, where Q is the quality factor of
the cavity. This requirement makes control of mode
competition one of the major constraints in designing high
power gyrotron devices. A simple cavity with circular cross
section, when utilized at frequencies well above the cut-off
frequency for the lowest order TE,, mode, can support a large
number of closely-spaced TE,, and TM,,A modes. (Here m is the
azimuthal mode index, and n is the radial mode index.) 1In
earlier experiments operating at 350 keV to 775 kev, it was
found that the easiest modes to excite were families of
"whaspering—gallery" TE modes, i.e. TE,, modes for which m>>n
{1,2]. 1In particular, for electron beam radii ranging froa
approximately 40% to 85% of the radius of a 3.2-cm-diam

gyrotron cavity, it was found that cavity modes of the TE_,
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type were most readily excited. By varying the magnetic field
in the cavity, TE_ , modes from 28 to 49 GHz were excited, with
m ranging from 4 to 10. However, the easiest modes to excite
may not always be the most desirable operating modes, either
for reasons of maximizing power or efficiency, or for ease of
utilization of the resulting rf emission. For instance, modes
with low start oscillation threshold currents will also have
lower optimum output powers than higher starting current

modes.

An alternative to operation in the modes with the lowest
start oscillation threshold currents (at particular applied
magnetic fields and beam radii), is to modify the simple
cylindrical cavity in order to favor other modes. One
straightforward means to raise the starting current of many of
the whispering-gallery modes is to bifurcate the cavity by
placing a pair of opposing axial slots in the cavity wall. By
this means, all modes will have their total Q lowered by
diffraction losses through the slots. However, modes
requiring the presence of large wall currents at the position
of the slots are most strongly affected, so that a proper
selection of slot width can often result in lowering the Q for
those modes enough to raise their starting current beyond that
of other mydes, allowing those other modes to start
oscillation. In particular, whispering-gallery modes can
generally be strongly suppressed by a pair of axial wall
slots, while TE,, modes are less strongly affected [3].
Instead, the slots make the TE,, modes linearly polarized

along the plane of the slots. (It is straightforward to

excite TE,, modes with small radius electron beams, since only




the TE,, modes couple exactly on axis. However, the beam
positions in high current devices designed to operate at very
high peak powers are subject to space charge constraints; the
beams will generally be annular and cannot be too far from the
conducting wall of the cavity.) The Soviet literature
discusses high peak power gyrotron experiments at both 10 GHz
[4,5] and 40 GHz [6,7] that employed axially slotted cavities
to operate stably in linearly-polarized TE,, modes. The 40
GHz experiment employed a 350 kev electron beam and reported
23 MW at 5% efficiency with a beam current of 1.3 kA.

In this paper, we describe a set of experiments comparing
the performance of slotted and unslotted cavities in a high
voltage (~900 keV), high current (~650 A) gyrotron experiment

operating at frequencies between approximately 20 and 50 GHz.

II. Experimental Setup

Figure 1 illustrates the experimental setup. A 600 kV
compact Febetron pulser with 100 2 impedance and 55 nsec
output voltage pulse is used to generate an annular electron
beam in a simple foilless diode geometry. The electrons are
emitted from the sharpened edge of a cylindrical graphite
cathode by explosive plasma formation. (In order to optimize
the compression ratio for these experiments, a graphite
cathode was employed that tapered down from a 1.75 cm radius
shank to a 1.27 cmeemitting tip--as a result of some emission
at the start of this taper, a low current halo was produced at
~1.4 times the radius of the main gyrotron beam.) The beam is

created in a uniform axial field provided by the main




solenoidal magnet. The initial transverse momentum is low,
because the emission is predominantly along the direction of
the applied magnetic field. Additional transverse momentum is
induced by transit through a localized depression in the axial
field, which is produced by the "pump" magnet. Finally, the
beam is adiabatically compressed to its final radius by the
cavity solenoid. 1In order to achieve separate adjustment of
the electron transverse momentum, the magnetic compression
ratio, and the final magnetic field in the gyrotron cavity,
each of the three magnets is powered by a separate capacitor
bank discharge. The overall experimental setup has been
described in more detail elsewhere [2]. The changes affecting
the present work are in the cathode radius and in the gyrotron
cavity design.

Three 2.34-cm-diam cavities were fabricated, of identical
design except for the presence of a pair of opposing 33° or
45° full width slots in two of the cavities. The 45° cavity
is illustrated in Fig. 2. These cavities were designed to run
in the TE,,; mode at 35 GHz, with the slotted cavities intended
to suppress competition from other nearby modes. The
calculated Q factor for these cavities was ~200 for the TE,,
mode, with the axial slots not significantly lowering this
value. Figure 3 shows a map of the lowest axial wavenumber
TE,, modes between approximately 22 and 53 GHz. (TM_,, modes
are omitted, since the gyrotron interaction couples relatively
weakly to these modes.) Fig. 4 shows the effect of slots on
the cavity Q of the TE,; mode and on two competing modes, the

TE,, and TE,, modes, as well as on two modes resonant near 48

GHz, the TE,, and TE;,, modes. (The TE,, mode near 35 GHz is




not included in Fig. 4, because coupling to it is very weak
for normalized beam radii (r,/r,) less than ~0.6.) The data
in this figure was generated using a theory and computer code
described in Ref. [3] to calculate the effect of finite slot
widths on cavity losses. 1In addition, the output diffraction
Q was calculated using a computer code employing weakly
irreqular waveguide theory [8] to calculate the diffraction Q
for the TE,; mode, with the Q factors for the other modes
scaled from this value as the square of their resonant
frequencies. (Minimum diffraction Q for an 1=1 mode near
cutoff in a gyrotron cavity of length L is given by 4n(L/)\)?,
where 1 is the axial mode index and A is the free-space
wavelength associated with the operating frequency.) The Q
values were also corrected for the calculated ohmic losses for

each mode.

III. Experimental Results and Discussion

A. Microwave measurements

The microwave measurement system consists of two separate
detection channels, each composed of calibrated "in-band" WR-
28 components, including filters, attenuators and directional
couplers, and beginning with a small microwave aperture
antenna positioned within 1 cm of the output window. 1In order
to reduce the power density at the apertures, a l-inch-thick
(~2.5 cm) phenolic vacuum window is employed, which produces a
measured signal attenuation of 10+0.5 dB. One aperture is
maintained at a fixed position on the output window, while t. -~

second is scanned. In order to normalize the data over the




large number of separate discharges needed to measure the
output mode pattern, the ratio of the scanning detector to the
fixed detector is calculated for each shot. These diagnostics
are described in greater de’ail elsewhere [2].

Fig. 5 shows a scan of the operating mode of the device
with the 45° slotted cavity employed, measured along a radius
normal to the plane of the slots, and operating at B, =26 kG
and 640 A, with a peak diode voltage of ~900 kV. A narrowband
(1.6 GHz FWHM) filter limited the detected signal to a narrow
frequency range about 35 GHz. The peak voltage results from
mismatching the diode impedance upward with respect to the
Febetron output impedance. The peak beam kinetic energy
should be corrected downward to ~840 keV because of space
charge depression, assuming a beam a~1l, where a is the ratio
of transverse to parallel velocity. The 55 nsec Febetron
voltage waveform consists of two separate voltage maxima
separated by ~30 nsec, with the valley after the first maximum
decreasing to about 67% of the maximum voltage, and the second
maximum rising to 75% of the height of the first. The two
voltage maxima are roughly triangular, so that the voltage is
changing during all times of experimental interest, including
the period during which the microwave signal is growing from
noise to its maximum signal. The magnetic field is adjusted
experimentally in order to place the peak of the 35 GHz
microwave signal at the first peak of the voltage waveform.
The implications of this time-dependent voltage on gyrotron
operation have been considered in detail in Ref. [2].

Figure 6 plots the square of the gyrotron coupling

coefficient (see Ref. [1]), which is inversely proportional to




the gyrotron starting current, as a function of radius. The
normalized beam radius in the cavity is 0.37. Under these
conditions, with the axial slots suppressing competition from
other modes that might couple to the beam at the experimental
beam radius, the expected mode of operation is a linearly-
polarized TE,, mode; the beam location is close to optimum for
coupling to this mode on the second radial peak. The expected
pattern for this mode is illustrated in Fig. 7. There is
substantial agreement between experiment and calculation,
although it appears that the measured mode at the output
window has undergone some mode conversion after exiting the
gyrotron cavity. The appearance of the measured mode suggests
that the TE,, mode has converted in part to the TE,, mode.

The measured mode pattern can be used to calculate the

total gyrotron power by integrating over the output window,

and correcting for the measured losses in the detection
system. This procedure is described in detail elsewhere [2].
For the case of a linearly-polarized mode, the calculated
power must be reduced by 3 dB compared to the result of
integrating the measured radial pattern over the entire output
window. Since the ratio of the measured power on axis to the
total emitted power in the mode can be determined in this
fashion, it is possible to calculate the best single-discharge
power. For the data of Fig. 5, this corresponds to 35 MW at
6% efficiency. Fig. 8 shows a plot of gyrotron start
oscillation threshold currents and output power contours for a
linearly-polarized TE,, mode as a function of beam current and
voltage, calculated assuming a sinusoidal rf-field profile in

the gyrotron cavity, and using a computer code based on the
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general nonlinear theory of gyrotron oscillators presented in
Ref. {9). These are steady-state calculations. They suggest
that an output power between 30 and 60 MW should occur at the
experimental beam current as the voltage ramps upwards to the
maximum of ~840 keV and subsequently decreases, in good
agreement with the experimental measurement, provided that the
voltage ramp provides sufficient time for saturaticen to occur.
For operation in a linearly-polarized mode, the efficiency
could be improved by use of a bifurcated cathode, since the
electrons near the rf null of the mode do not efficiently
transfer energy to the waves.

An unsuccessful attempt was made to operate at higher
output power with the beam located on the third radial maximum
of the TE,; mode. Since the starting current in this case is
approximately twice as high due te the weaker coupling
coefficient (see Fig. 6), the failure to observe high power
emission is believed to be related to the inability to achieve
high power oscillation during the short time provided by the

Febetron voltage waveform.

B. Gas breakdown measurements

In order to supplement the calibrated, time-resolved
single position measurements possible with microwave apertures
with a more global view of the microwave emission, a time-
integrated gas breakdown technique was employed. The
experimental setup is illustrated in Fig. 9. It is described
in detail in Ref. [2].

Figure 10 depicts open shutter gas breakdown photographs

obtained under conditions corresponding to the data of Fig. 5.
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Photographs taken at two different ambient pressures in the
gas breakdown cell depict the key features of a linearly-
polarized TE,, mode, with some possible mode impurity from
other linearly-polarized TE,, modes, most likely the TE,, and
TE,, modes, probably due to mode conversion in the output
taper and waveguide. (The small-scale azimuthal structure in
the 8 Torr discharge is believed to be due to phenomena in the
low-pressure gas discharge, and not to reflect information
relating to the small-scale structure of the microwave mode
pattern.) The importance of the axial cavity slots to the
stability of the TE,; mode is shown in Fig. 11, which shows
two photographs of gas breakdown mode patterns corresponding
to operation with an unslotted cavity under conditions
identical to Fig. 10. In the upper photograph, the strong
presence of a circularly-polarized TE,, mode is indicated by
the appearance of a breakdown maximum on axis, while on
another shot with identical experimental parameters, the lower
pattern indicates the absence of strong TE,; mode content, and
probably corresponds to the excitation of a circularly-
polarized TE,, mode. (An attempt was made to scan the output
mode of the unslotted cavity with microwave pickups, but the
large shot-to-shot variation in the 35 GHz emission as a
function of radius, apparently due to the mode switching
illustrated in Fig. 11, made this impossible to carry out in a
systematic manner.)

The very crowded mode map shown in Fig. 3 for the
unslotted cavity is greatly simplified for a cavity with two
large opposing axial slots, since only the TE, modes remain.

For the 45° cavity, an attempt was made to excite the adjacent




TE,, modes. A very weak mode with a maximum on axis was

observed via gas breakdown at B ~16 kG; this is believed to be
the TE,, mode at ~22 GHz. An unsuccessful attempt was made to
observe the TE,, mode at ~48 GHz; this attempt was somewhat
constrained by the difficulty of operating at B, ~36 kG,
including the somewhat restricted range of magnetic
compression ratios that were experimentally accessible. 1In
the absence of the slots, operating at 26.0, 30.7, and 35.5
kG, it was straightforward to demonstrate the TE,,, TE;,, and
TE,, modes (see Fig. 12), at approximately 38, 43, and 48 GHz.
This was done by employing an electron beam radius that
coupled strongly to both circularly-polarized components of
the specific TE , mode, so that the output mode would have a
strong "standing” component. These observations of TE , modes
are similar to those reported previously in an experiment
employing a 3.2-cm-diam. cylindrical cavity [2]. It is
believed that the TE,, mode was also excited, at ~53 GHz, but
the resulting gas breakdown photographs were less clear-cut
than those in Fig. 12, and the difficulty of operating at ~40
kG precluded a detailed evaluation of this mode.

The width of the opposing axial slots determined the
diffractive losses for particular cavity modes. Based on the
calculations of cavity Q versus slot angle (see Fig. 4), it
was predicted that the 33° slotted cavity would not completely
suppress the TE,, mode at ~48 GHz. This prediction was
confirmed by the observation of a linearly-polarized TE;, mode
at 35.5 kG (see Fig. 13). This mode was completely suppressed

by the 45° slotted cavity. Comparison of Fig. 13 to Fig. 12
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(bottom) demonstrates the difference between a true linearly-
S polarized TE;, mode, and one with a strong "standing"
‘2; component that is actually elliptically polarized. The reason
for the excitation of a linearly-polarized TE,, mode, rather
ot than of the TE,, mode that is almost degenerate in frequency
. with it, may be inferred from an examination of the coupling
coefficients for the two modes as a function of normalized
??i : beam radius (see Fig. 14). The accessible compression ratios
g at 35.5 kG precluded placing the beam on either the central or
second peak of the coupling coefficient for the TE,, mode. At
larger radii, in the range of r,/r,~0.45-0.6, the TE;, mode
has a larger coupling coefficient, implying a lower starting
current, assuming equal Q values for the two modes. 1In fact,

W Fig. 4 indicates that for a 33° slotted cavity, the TE;, mode

‘ﬁ@ has a slightly higher Q value, further favoring this mode.

rout Perhaps most important is the small radial extent of the third
o

;ﬁg peak of the coupling coefficient for the TE,, mode compared to
,%& the very broad coup.ing curve for the TE;,, mode, further

), favoring the TE,, mode for a beam with finite spread in

guiding center radius and in addition slight decentering.

iﬁ& In summary, a 35 GHz gyrotron oscillator employing an
axially bifurcated cavity has successfully operated in a

:5 linearly-polarized TE,, mode at a peak power of 35 MW with 6%

{é ) efficiency. By comparison, an earlier TE,, experiment at the

same frequency in an unslotted cavity achieved 100 MW at 8%

o, efficiency.? The effect of the slots on mode competition with

the nearby TE,, mode has been calculated and demonstrated

experimentally, via air breakdown photographs from slotted and

i unslotted cavities. The unslotted cavity has been operated at
L\
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high power in TE,,, TE,,, and TE,, modes at 38, 43, ard 48
GHz. A 33° slotted cavity has been shown to support a
linearly-polarized TE;, mode, while 45° slots have been shown

to suppress this mode, in agreement with calculations based on

the theory of Mcbonald, et al. [3].
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. Torr (bottom). An arrow indicates the 7 ¢m radius of the output waveguide. (The outer halo is a
b reflection produced by the walls of the cylindrical breakdown cell. Crossing vertical and horizontal
- lines on the window face define the center of the aperture. The horizontal line is divided by cm
rulings.)
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Fig. 11 — tna-on open snutter pnotograpns ot microwave-induced gas breakdown for B, =26 kG and
an unslotted cavity, illustrating the observation of a circularly-polarized TE,; component at 35 GHz
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Fig. 12 — End-on open shutter photograpns of microwave-induced gas breakdown for B, =26 kG
(top), 30.7 kG (center), and 35.5 kG (bottom) with an unslotted cavity, illustrating the observation of
standing TE,,, TEs,, and TEg, modes at approximately 38, 43, and 48 GHz.
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het Fig. 13 — End-on open shutter photograph of microwave-induced gas breakdown for B, =35.5 kG
t and a cavity with 33° axial slots, illustrating the observation of a linearly-polarized TE4, mode at 48
"’;f:'. GHz
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Fig. 14 — Plot of the square of the gyrotron coupling coefficient versus normalized cavity radius for
lincarly-polarized TEg, and TE,;; modes. The calculations are performed assuming an azimuthally-
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